Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 110
Filtrar
Más filtros

Medicinas Complementárias
Tipo del documento
Intervalo de año de publicación
1.
Heliyon ; 10(5): e27135, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38444487

RESUMEN

Drought stress and weed infestation are significant factors that significantly decrease cotton yield. Increasing the variety of plants within a cotton field ecosystem can strengthen its stability and protect it from susceptibility to both biotic and abiotic pressures. In this two-year experiment (2021 and 2022), the effects of intercropping systems (four growth conditions including mono- and inter-cropped cotton varieties Golestan and Hekmat with Nepeta crispa and dragon's head (Lallemantia iberica)), irrigation (three intervals of 3, 6, and 9 days), and weed competition (weed-free and weedy plots) on the agronomic performance, physiological characteristics, and seed quality of cotton in a semi-arid region of Iran were studied. In 2021, the volume of irrigation water applied was 9873, 6100, and 4650 m3 ha-1 for irrigation intervals of 3, 6, and 9 days, respectively. In 2022, the volumes were 9071, 5605, and 4272 m3 ha-1 for the corresponding irrigation intervals. Over two years, Xanthium strumarium, Amaranthus retroflexus, and Portulaca oleracea were the dominant weed species. Weeds had the most significant impact on total dry weight; weed control increased plant vigor and growth, ranging from 1.4 to 2.3 times, while weed impact on cottonseed yield ranged from 18% to 96% reduction. Increasing irrigation intervals resulted in reductions in various parameters, with decreases of 39%-80% in total dry weight, 34%-57% in cottonseed yield, and 48%-72% in lint yield. The harvest indices for seed cotton, cottonseed, and lint ranged from 35.3% to 56.5%, 18.3%-35.0%, and 15.4%-20.5%, respectively. Weeds were responsible for a 17% decrease in the 1000-seed weight. As the irrigation intervals increased from 3 days to 6 days and 9 days, the number of bolls per plant decreased by 19%-85%. Extending the irrigation interval from 3 days to 6 days and 9 days resulted in a substantial decrease in the photosynthetic rate, ranging from 42% to 92%. Mono-cropped Golestan performed well under unstressed conditions such as 3-day interval irrigation and weed-free conditions. On the other hand, intercropped Hekmat demonstrated better resilience to both moisture and weed stresses. The LER (Land equivalent ratio) indices of both intercropping systems were generally favorable, indicating higher productivity compared to sole cropping. The intercropping systems consistently showed the highest LER indices under weedy conditions, highlighting the significance of intercropping as a valuable method in integrated weed management.

2.
Pest Manag Sci ; 80(1): 103-114, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37682594

RESUMEN

Until recently, only a few plant viruses had been studied for use as biological control agents for weeds, but none had been developed into a registered bioherbicide. This position changed in 2014, when the US Environmental Protection Agency granted an unrestricted Section 3 registration for tobacco mild green mosaic virus (TMGMV) strain U2 as a herbicide active ingredient for a commercial bioherbicide (SolviNix LC). It is approved for the control of tropical soda apple (TSA, Solanum viarum), an invasive 'noxious weed' in the United States. TSA is a problematic weed in cattle pastures and natural areas in Florida. The TMGMV-U2 product kills TSA consistently, completely, and within a few weeks after its application. It is part of the TSA integrated best management practice in Florida along with approved chemical herbicides and a classical biocontrol agent, Gratiana boliviana (Coleoptera: Chrysomelidae). TMGMV is nonpathogenic and nontoxic to humans, animals, and other fauna, environmentally safe, and as effective as chemical herbicides. Unlike the insect biocontrol agent, TMGMV kills and eliminates the weed from fields and helps recycle the dead biomass in the soil. Here the discovery, proof of concept, mode of action, risk analyses, application methods and tools, field testing, and development of the virus as the commercial product are reviewed. Also reviewed here are the data and scientific justifications advanced to answer the concerns raised about the use of the virus as a herbicide. The prospects for discovery and development of other plant-virus-based bioherbicides are discussed. © 2023 Society of Chemical Industry.


Asunto(s)
Escarabajos , Herbicidas , Solanum , Tobamovirus , Humanos , Animales , Bovinos , Herbicidas/farmacología , Malezas , Control de Malezas
3.
Pest Manag Sci ; 80(1): 92-102, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37794581

RESUMEN

Among the alternatives to synthetic plant protection products, biocontrol appears as a promising method. This review reports on the diversity of fungal secondary metabolites phytotoxic to weeds and on the approach generally used to extract, characterize, identify and exploit them for weed management. The 183 phytotoxic fungal secondary metabolites discussed in this review fall into five main classes of molecules: 61 polyketides, 53 terpenoids, 36 nitrogenous metabolites, 18 phenols and phenolic acids, and 15 miscellaneous. They are mainly produced by the genera Drechslera, Fusarium and Alternaria. The phytotoxic effects, more often described by the symptoms they produce on plants than by their mode of action, range from inhibition of germination to inhibition of root and vegetative growth, including tissue and organ alterations. The biochemical characterization of fungal secondary metabolites requires expertise and tools to carry out fungal cultivation and metabolite extraction, phytotoxicity tests, purification and fractionation of the extracts, and chemical identification procedures. Phytotoxicity tests are mainly carried out under controlled laboratory conditions (not always on whole plants), while effectiveness against targeted weeds and environmental impacts must be assessed in greenhouses and open fields. These steps are necessary for the formulation of effective, environment-friendly fungal secondary metabolites-derived bioherbicides using new technologies such as nanomaterials. © 2023 Society of Chemical Industry.


Asunto(s)
Alcaloides , Herbicidas , Hongos Mitospóricos , Herbicidas/química , Malezas , Alcaloides/farmacología , Extractos Vegetales/farmacología
4.
Braz. j. biol ; 842024.
Artículo en Inglés | LILACS-Express | LILACS, VETINDEX | ID: biblio-1469351

RESUMEN

Abstract The bioecology and infestation aspects of Neotuerta platensis Berg, 1882 (Lepidoptera: Noctuidae) on plants are poorly known. This insect fed on the leaves of common purslane, Portulaca oleracea L. (Portulacaceae) for two consecutive years, which triggered its study in the following five years in Januária, Minas Gerais State, Brazil. The objective of this work was to study the bioecology and infestation aspects of N. platensis on P. oleracea plants in the field and laboratory. The mean duration (± SD) of the egg, larva and pupa stages was 3.6 ± 0.89, 11.5 ± 2.81 and 10.7 ± 1.97 days, respectively. The mean numbers of egg masses and eggs per female (± SD) were 3.8 ± 1.16 and 891.6 ± 116.83, respectively. The percentage of infested plants was 59, 74, 0, 78 and 75% and the mean numbers of larvae per plant (± SD) ranged from 0.7 ± 0.45 to 1.6 ± 0.49 individuals, respectively from 2015 to 2019. Neotuerta platensis larvae infested P. oleracea plants in four out of five years evaluated.


Resumo Os aspectos de bioecologia e infestação de Neotuerta platensis Berg, 1882 (Lepidoptera: Noctuidae) em plantas são pouco conhecidos. Esse inseto se alimentou das folhas de beldroega comum, Portulaca oleracea L. (Portulacaceae) por dois anos consecutivos, o que desencadeou seu estudo nos cinco anos seguintes em Januária, Minas Gerais, Brasil. O objetivo deste trabalho foi estudar a bioecologia e os aspectos da infestação de N. platensis em plantas de P. oleracea em campo e laboratório. A duração média (± DP) dos estágios de ovo, larva e pupa foi de 3,6 ± 0,89, 11,5 ± 2,81 e 10,7 ± 1,97 dias, respectivamente. Os números médios de posturas e ovos por fêmea (± DP) foram de 3,8 ± 1,16 e 891,6 ± 116,83, respectivamente. A porcentagem de plantas infestadas foi de 59, 74, 0, 78 e 75% e os números médios de larvas por planta (± DP) variaram de 0,7 ± 0,45 a 1,6 ± 0,49 indivíduos, respectivamente de 2015 a 2019. Larvas de N. platensis infestaram plantas de P. oleracea em quatro dos cinco anos avaliados.

5.
Braz. j. biol ; 84: e252836, 2024. tab, ilus
Artículo en Inglés | LILACS, VETINDEX | ID: biblio-1360210

RESUMEN

The bioecology and infestation aspects of Neotuerta platensis Berg, 1882 (Lepidoptera: Noctuidae) on plants are poorly known. This insect fed on the leaves of common purslane, Portulaca oleracea L. (Portulacaceae) for two consecutive years, which triggered its study in the following five years in Januária, Minas Gerais State, Brazil. The objective of this work was to study the bioecology and infestation aspects of N. platensis on P. oleracea plants in the field and laboratory. The mean duration (± SD) of the egg, larva and pupa stages was 3.6 ± 0.89, 11.5 ± 2.81 and 10.7 ± 1.97 days, respectively. The mean numbers of egg masses and eggs per female (± SD) were 3.8 ± 1.16 and 891.6 ± 116.83, respectively. The percentage of infested plants was 59, 74, 0, 78 and 75% and the mean numbers of larvae per plant (± SD) ranged from 0.7 ± 0.45 to 1.6 ± 0.49 individuals, respectively from 2015 to 2019. Neotuerta platensis larvae infested P. oleracea plants in four out of five years evaluated.


Os aspectos de bioecologia e infestação de Neotuerta platensis Berg, 1882 (Lepidoptera: Noctuidae) em plantas são pouco conhecidos. Esse inseto se alimentou das folhas de beldroega comum, Portulaca oleracea L. (Portulacaceae) por dois anos consecutivos, o que desencadeou seu estudo nos cinco anos seguintes em Januária, Minas Gerais, Brasil. O objetivo deste trabalho foi estudar a bioecologia e os aspectos da infestação de N. platensis em plantas de P. oleracea em campo e laboratório. A duração média (± DP) dos estágios de ovo, larva e pupa foi de 3,6 ± 0,89, 11,5 ± 2,81 e 10,7 ± 1,97 dias, respectivamente. Os números médios de posturas e ovos por fêmea (± DP) foram de 3,8 ± 1,16 e 891,6 ± 116,83, respectivamente. A porcentagem de plantas infestadas foi de 59, 74, 0, 78 e 75% e os números médios de larvas por planta (± DP) variaram de 0,7 ± 0,45 a 1,6 ± 0,49 indivíduos, respectivamente de 2015 a 2019. Larvas de N. platensis infestaram plantas de P. oleracea em quatro dos cinco anos avaliados.


Asunto(s)
Animales , Portulaca/parasitología , Larva , Lepidópteros
6.
Plants (Basel) ; 12(17)2023 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-37687320

RESUMEN

Chickpea (Cicer arietinum L.) is a major pulse crop worldwide, renowned for its nutritional richness and adaptability. Weeds are the main biotic factor deteriorating chickpea yield and nutritional quality, especially Asphodelus tenuifolius Cav. The present study concerns a two-year (2018-19 and 2019-20) field trial aiming at evaluating the effect of weed management on chickpea grain quality. Several weed management practices have been here implemented under a factorial randomized complete block design, including the application of four herbicides [bromoxynil (C7H3Br2NO) + MCPA (Methyl-chlorophenoxyacetic acid) (C9H9ClO3), fluroxypyr + MCPA, fenoxaprop-p-ethyl (C18H16ClNO5), pendimethalin (C13H19N3O4)], the extracts from two allelopathic weeds (Sorghum halepense and Cyperus rotundus), two mulches (wheat straw and eucalyptus leaves), a combination of A. tenuifolius extract and pendimethalin, and an untreated check (control). Chickpea grain quality was measured in terms of nitrogen, crude protein, crude fat, ash, and oil content. The herbicides pendimethalin (Stomp 330 EC (emulsifiable concentrate) in pre-emergence at a rate of 2.5 L ha-1) and fenoxaprop-p-ethyl (Puma Super 7.5 EW (emulsion in water) in post-emergence at a rate of 1.0 L ha-1), thanks to A. tenuifolius control, showed outstanding performance, providing the highest dietary quality of chickpea grain. The herbicides Stomp 330 EC, Buctril Super 40 EC, Starane-M 50 EC, and Puma Super 7.5 EW provided the highest levels of nitrogen. Outstanding increases in crude protein content were observed with all management strategies, particularly with Stomp 330 EC and Puma Super 7.5 EW (+18% on average). Ash content was highly elevated by Stomp 330 EC and Puma Super 7.5 EW, along with wheat straw mulching, reaching levels of 2.96% and 2.94%. Crude fat content experienced consistent elevations across all treatments, with the highest improvements achieved by Stomp 330 EC, Puma Super 7.5 EW, and wheat straw mulching applications. While 2018-19 displayed no significant oil content variations, 2019-20 revealed the highest oil content (5.97% and 5.96%) with herbicides Stomp 330 EC and Puma Super 7.5 EW, respectively, followed by eucalyptus leaves mulching (5.82%). The results here obtained are of key importance in the agricultural and food sector for the sustainable enhancement of chickpea grain's nutritional quality without impacting the environment.

7.
Plants (Basel) ; 12(16)2023 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-37631128

RESUMEN

The advent of the "Green Revolution" was a great success in significantly increasing crop productivity. However, it involved high ecological costs in terms of excessive use of synthetic agrochemicals, raising concerns about agricultural sustainability. Indiscriminate use of synthetic pesticides resulted in environmental degradation, the development of pest resistance, and possible dangers to a variety of nontarget species (including plants, animals, and humans). Thus, a sustainable approach necessitates the exploration of viable ecofriendly alternatives. Plant-based biopesticides are attracting considerable attention in this context due to their target specificity, ecofriendliness, biodegradability, and safety for humans and other life forms. Among all the relevant biopesticides, plant essential oils (PEOs) or their active components are being widely explored against weeds, pests, and microorganisms. This review aims to collate the information related to the expansion and advancement in research and technology on the applications of PEOs as biopesticides. An insight into the mechanism of action of PEO-based bioherbicides, bioinsecticides, and biofungicides is also provided. With the aid of bibliometric analysis, it was found that ~75% of the documents on PEOs having biopesticidal potential were published in the last five years, with an annual growth rate of 20.51% and a citation per document of 20.91. Research on the biopesticidal properties of PEOs is receiving adequate attention from European (Italy and Spain), Asian (China, India, Iran, and Saudi Arabia), and American (Argentina, Brazil, and the United States of America) nations. Despite the increasing biopesticidal applications of PEOs and their widespread acceptance by governments, they face many challenges due to their inherent nature (lipophilicity and high volatility), production costs, and manufacturing constraints. To overcome these limitations, the incorporation of emerging innovations like the nanoencapsulation of PEOs, bioinformatics, and RNA-Seq in biopesticide development has been proposed. With these novel technological interventions, PEO-based biopesticides have the potential to be used for sustainable pest management in the future.

8.
Phytochemistry ; 215: 113838, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37648046

RESUMEN

Six different furanocoumarins were isolated from the aerial parts of Ducrosia anethifolia and tested in vitro for plant cell elongation in etiolated wheat coleoptile. They were also tested for their ability to control three different weeds: ribwort plantain, annual ryegrass, and common purslane. These compounds exhibited strong inhibition of plant cell elongation. In the case of (+)-heraclenin, the IC50 was lower than 20 µM, indicating a better inhibition than the positive control Logran®. Computational experiments for docking and molecular dynamics revealed for the investigated furanocoumarins bearing an epoxide moiety an improved fitting and stronger interaction with the auxin-like TIR1 ubiquitin ligase. Furthermore, the formed inhibition complex remained also stable during dynamic evaluation. Bidental interaction at the active site, along with an extended hydrogen-bond lifetime, explained the enhanced activity of the epoxides. The in vitro weed bioassay results showed that Plantago lanceolata was the most affected weed for germination, root, and shoot development. In addition, (+)-heraclenin displayed better inhibition values than positive control even at 300 µM concentration.


Asunto(s)
Apiaceae , Fabaceae , Furocumarinas , Oryza , Oryza/química , Productos Agrícolas , Extractos Vegetales/farmacología , Verduras , Malezas
9.
Ecol Evol ; 13(6): e10145, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37284667

RESUMEN

Monk's rhubarb, Rumex alpinus L. (R. alpinus), is a perennial plant native to the mountains of Central and Southern Europe. Currently, the distribution of R. alpinus has been partly affected by its utilization as a vegetable and a medicinal herb. In the mountains of the Czech Republic, it is considered an invasive plant, probably introduced into the Krkonose Mountains by colonists from the Alps. This study's main aim was to verify whether R. alpinus was introduced into the Krkonose Mountains by alpine colonists or whether it was anthropogenically introduced from the Carpathians. Furthermore, the genetic structure of native and introduced populations of R. alpinus was determined. For the evaluation of genetic structure, 417 samples of R. alpinus were collected from the Alps, Carpathians, Balkan, Pyrenees, and Czech Mountains. In total, 12 simple sequence repeat (SSR) markers were applied. The results of AMOVA showed a high 60% variation within populations, 27% variation among groups, and 13% among the population within groups. The overall unbiased gene diversity was high (^h = 0.55). The higher level of genetic differentiation among populations (FST = 0.35; p < .01) indicated restricted gene flow between populations. Compared to native populations, limited genetic variability was observed in the nonnative populations. It was concluded that local adaptation, low gene exchange, and genetic drift affected the genetic diversity of nonnative R. alpinus. The results support a genetic link between Alpine and Czech genotypes of R. alpinus, while the Carpathians genotypes corresponded to the Balkan genotype.

10.
Mycorrhiza ; 33(4): 257-275, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37289330

RESUMEN

Substantial areas of agricultural lands in Sub-Saharan Africa have been invaded by Chromolaena odorata (Asteraceae), but the consequences for arbuscular mycorrhiza fungi (AMF) remains poorly understood. This study explores changes in diverse AMF community attributes and soil available phosphorus following C. odorata invasion in forest and savanna fragments in Côte d'Ivoire (West Africa). Invaded-forest (COF) and savanna (COS) sites were compared to adjacent natural forest (FOR) and savanna (SAV) fragments, respectively. Physico-chemical variables and AMF spore density parameters were determined for soil samples from 0-20 cm depth. An 18S ribosomal RNA metabarcoding analysis of AMF communities was conducted. In addition, cowpea (Vigna unguiculata) was grown on soils collected from these sites under greenhouse conditions for determination of soil mycorrhizal infectivity. Noticeable changes in the composition of AMF communities in C. odorata relative to nearby forest and savanna non-invaded sites were observed. AMF-specific richness in COS (47 species) was lower than that in SAV (57 species) while it was higher in COF (68 species) than in FOR (63 species). COF and COS differed in AMF specific composition (Dissimilarity index = 50.6%). Chromolaena odorata invasions resulted in increased relative abundances of the genera Claroideoglomus and Glomus in COF, a decreased relative abundance of Paraglomus in COS and decreased relative abundances of Ambispora in both COF and COS. Total and healthy spore densities, cowpea root colonization intensity and soil available P were all higher in invaded sites than in natural ecosystems. Remarkably, although these values were different in FOR and SAV, they turned out to be similar in COF and COS (4.6 and 4.2 total spores g-1 soil, 2.3 and 2.0 healthy spores g-1 soil, and 52.6 and 51.6% root colonization, respectively) suggesting a C. odorata-specific effect. These findings indicate that soil mycorrhizal potential and phosphorus availability have improved following C. odorata invasion.


Asunto(s)
Asteraceae , Chromolaena , Glomeromycota , Micobioma , Micorrizas , Ecosistema , Suelo/química , Fósforo , Pradera , Esporas Fúngicas , Bosques , Microbiología del Suelo , Raíces de Plantas/microbiología
11.
Curr Allergy Asthma Rep ; 23(6): 277-285, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37178263

RESUMEN

PURPOSE OF REVIEW: Defensin-polyproline-linked proteins are relevant allergens in Asteraceae pollen. Depending on their prevalence and amount in the pollen source, they are potent allergens, as shown for the major mugwort pollen allergen Art v 1. Only a few allergenic defensins have been identified in plant foods, such as peanut and celery. This review provides an overview of structural and immunological features, IgE cross-reactivity, and diagnostic and therapeutic options regarding allergenic defensins. RECENT FINDINGS: We present and critically review the allergenic relevance of pollen and food defensins. The recently identified Api g 7 from celeriac and other allergens potentially involved in Artemisia pollen-related food allergies are discussed and related to clinical severity and allergen stability. To specify Artemisia pollen-related food allergies, we propose the term "defensin-related food allergies" to account for defensin-polyproline-linked protein-associated food syndromes. There is increasing evidence that defensins are the causative molecules in several mugwort pollen-associated food allergies. A small number of studies have shown IgE cross-reactivity of Art v 1 with celeriac, horse chestnut, mango, and sunflower seed defensins, while the underlying allergenic molecule remains unknown in other mugwort pollen-associated food allergies. As these food allergies can cause severe allergic reactions, identification of allergenic food defensins and further clinical studies with larger patient cohorts are required. This will allow molecule-based allergy diagnosis and a better understanding of defensin-related food allergies to raise awareness of potentially severe food allergies due to primary sensitization to Artemisia pollen.


Asunto(s)
Artemisia , Hipersensibilidad a los Alimentos , Humanos , Proteínas de Plantas/química , Polen , Alérgenos , Reacciones Cruzadas , Inmunoglobulina E , Defensinas/análisis , Antígenos de Plantas
12.
Plants (Basel) ; 12(6)2023 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-36987067

RESUMEN

Trewia nudiflora Linn. is a woody plant of the Euphorbiaceae family. It is well known for its use as a folk remedy, but its potential for phytotoxicity has not been explored. Therefore, this study investigated the allelopathic potential and the allelopathic substances in T. nudiflora leaves. The aqueous methanol extract of T. nudiflora was found to have a toxic effect on the plants used in the experiment. The shoot and root development of lettuce (Lactuca sativa L.) and foxtail fescue (Vulpia myuros L.) were significantly (p ≤ 0.05) reduced by the T. nudiflora extracts. The growth inhibition by the T. nudiflora extracts was proportional to the extract concentration and varied with the test plant species. The chromatographic separation of the extracts resulted in the isolation of two substances, identified as loliolide and 6,7,8-trimethoxycoumarin based on their respective spectral analyses. Both substances significantly inhibited lettuce growth at a concentration of 0.01 mM. To inhibit 50% of the growth of the lettuce, the required concentration of loliolide was 0.043 to 0.128 mM, while that of 6,7,8-trimethoxycoumarin was 0.028 to 0.032 mM. Comparing these values, the lettuce growth was more sensitive to 6,7,8-trimethoxycoumarin than loliolide, suggesting that 6,7,8-trimethoxycoumarin was more effective than loliolide. Therefore, the inhibition of the growth of the lettuce and foxtail fescue suggests that loliolide and 6,7,8-trimethoxycoumarin are responsible for the phytotoxicity of the T. nudiflora leaf extracts. Thus, the growth-inhibitory effectiveness of the T. nudiflora extracts and the identified loliolide and 6,7,8-trimethoxycoumarin may be used to develop bioherbicides that restrict the growth of weeds.

13.
Plants (Basel) ; 12(5)2023 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-36903886

RESUMEN

Milk thistle besides being a highly competitive weed is cultivated as a medicinal plant, and the seeds of which have been clinically utilized in several disorders caused in liver. The present study aims to evaluate the effect of duration and storage conditions, population, and temperature on seed germination. The experiment was conducted in Petri dishes with three replications and three factors: (a) wild populations of milk thistle (Palaionterveno, Mesopotamia, and Spata) originating from Greece, (b) duration and storage conditions (5 months at room temperature, 17 months at room temperature, and 29 months in the freezer at -18 °C), and (c) temperature (5 °C, 10 °C, 15 °C, 20 °C, 25 °C, and 30 °C). All three factors significantly affected germination percentage (GP), mean germination time (MGT), germination index (GI), radicle length (RL), and hypocotyl length (HL) and significant interactions among the treatments were noted. In specific, no seed germination was recorded at 5 °C, while the populations showed higher GP and GI at 20 °C and 25 °C after 5 months of storage. Prolonged storage negatively affected seed germination although, cold storage mitigated this effect. Moreover, higher temperatures reduced MGT and increased RL and HL with the populations reacting differently in storage and temperature regimes. The results of this study should be taken into consideration when proposing the appropriate sowing date and storage conditions of the seeds used as propagation material for crop establishment. Moreover, the effects of low temperatures such as 5 °C or 10 °C on seed germination as well as the high decline rate in germination percentage over time could be utilized in the design of integrated weed management systems thereby indicating the importance of the sowing time and the suitable crop rotation system to weed control.

14.
Sci Total Environ ; 876: 162673, 2023 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-36894104

RESUMEN

Fast growing Kariba weed causes major problems and pollution on freshwater and shellfish aquaculture systems by interfering with nutrient uptake of crops, restricting sunlight penetration, and decreasing water quality due to massive biomass of Kariba weed remnants. Solvothermal liquefaction is considered an emerging thermochemical technique to convert waste into high yield of value-added products. Solvothermal liquefaction (STL) of Kariba weed as an emerging contaminant was performed to investigate the effects of different types of solvents (ethanol and methanol) and Kariba weed mass loadings (2.5-10 % w/v) on treating and reducing the weed via conversion into potentially useful crude oil product and char. Up to 92.53 % of Kariba weed has been reduced via this technique. The optimal conditions for crude oil production were found to be at 5 % w/v of mass loading in methanol medium, resulting in a high heating value (HHV) of 34.66 MJ/kg and yield of 20.86 wt%, whereas the biochar production was found to be optimum at 7.5 % w/v of mass loading in methanol medium, resulting in 29.92 MJ/kg of HHV and 25.38 wt% of yield. The crude oil consisted of beneficial chemical compounds for biofuel production such as hexadecanoic acid, methyl ester (65.02 peak area %) and the biochar showed high carbon content (72.83 %). In conclusion, STL as a remediation for emerging Kariba weed is a feasible process for shellfish aquaculture waste treatment and biofuels production.


Asunto(s)
Metanol , Petróleo , Temperatura , Mariscos , Biocombustibles , Biomasa , Agua Dulce
15.
J Environ Sci Health B ; 58(1): 69-79, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36747348

RESUMEN

Guarana (Paullinia cupana Kunth var. sorbilis) is a typically Amazonian plant of high economic value due to the compounds found in its seed. For guarana to reach the maximum productive potential, management practices such as weed control are necessary. The use of herbicides is a viable alternative, however, its drift may lead to adverse effects on the primary and secondary plant metabolisms and cause losses in crop production. This study evaluated the differential drift effects of glyphosate doses on the physiology of guarana plants and the production of compounds of economic interest in their seeds. Glyphosate doses (57.6, 115.2, 230.4, 460.8 g ae ha-1) were applied to adult guarana plants after the flowering period. The photosynthetic functions and metabolism effects were evaluated. Herbicide treatments led to oxidative stress due to increased lipid peroxidation and increased carbohydrate and amino acid in their leaflets. Despite this, glyphosate showed no effect on fruit production or the content of secondary metabolites of commercial interest in seeds.


Asunto(s)
Frutas , Paullinia , Paullinia/química , Paullinia/metabolismo , Cafeína , Semillas/química , Extractos Vegetales/farmacología
16.
J Environ Manage ; 326(Pt B): 116728, 2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36399811

RESUMEN

Allelopathic compounds can play a vital role in protecting the environment from pollution by synthetic herbicides. Compounds isolated from plant species with allelopathic potential can be used as natural herbicides to control weeds and help reduce environmental pollution. Elaeocarpus floribundus has been reported to contain allelopathic compounds. Aqueous methanolic extracts of the leaves of this plant showed strong growth inhibitory potential against two test species (monocotyledonous Italian ryegrass and dicotyledonous alfalfa) in plants- and dose-dependent technique. Several extensive chromatographic separations of the E. floribundus leaf extracts yielded four active compounds 1, 2, 3, and 4 (novel compound). All the identified compounds showed strong growth inhibitory potential against cress. The concentrations caused for 50% growth limitation (I50 values) of the cress seedlings were in the range 500.4-1913.1 µM. The findings indicate that the identified compounds might play a pivotal function in the allelopathic potential of E. floribundus tree. This report is the first on elaeocarpunone and its allelopathic potential.


Asunto(s)
Elaeocarpaceae , Herbicidas , Extractos Vegetales/farmacología , Extractos Vegetales/química , Alelopatía , Malezas , Herbicidas/farmacología
17.
Molecules ; 27(17)2022 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-36080124

RESUMEN

Weeds pose a problem, infesting areas and imposing competition and harvesting difficulties in agricultural systems. Studies that provide the use of alternative methods for weed control, in order to minimize negative impacts on the environment, have intensified. Native flora represents a source of unexplored metabolites with multiple applications, such as bioherbicides. Therefore, we aimed to carry out a preliminary phytochemical analysis of crude extracts and fractions of Miconia auricoma and M. ligustroides and to evaluate these and the isolated metabolites phytotoxicity on the growth of the target species. The growth bioassays were conducted with Petri dishes with lettuce, morning glory, and sourgrass seeds incubated in germination chambers. Phytochemical analysis revealed the presence of flavonoids, isolated myricetin, and a mixture of quercetin and myricetin. The results showed that seedling growth was affected in a dose-dependent manner, with the root most affected and the seedlings of the lettuce, morning glory, and sourgrass as the most sensitive species, respectively. Chloroform fractions and myricetin were the most inhibitory bioassays evaluated. The seedlings showed structural changes, such as yellowing, nonexpanded cotyledons, and less branched roots. These results indicate the phytotoxic potential of Miconia allelochemicals, since there was the appearance of abnormal seedlings and growth reduction.


Asunto(s)
Melastomataceae , Germinación , Fitoquímicos/farmacología , Extractos Vegetales/química , Extractos Vegetales/farmacología , Malezas , Plantones , Control de Malezas
18.
J Ethnopharmacol ; 298: 115608, 2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-35973630

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Weeds are often considered undesirable as they interfere with the habitat of native plants, and therefore they are underestimated and underutilised. In fact, some edible weeds have beneficial nutritional and medicinal values. Alternanthera sessilis (L.) R. Br. ex DC., an edible medicinal weed is a species of the Amaranthaceae family that consists of two cultivars: green and red. Local communities in different regions have traditionally consumed the plants as food and medicine, with the green cultivar being applied to relieve pain, treat wound healing, dysentery, asthma and hypertension, while the red cultivar is applied to prevent cardiovascular and liver diseases in general. AIM OF THE STUDY: The present review intends to provide an in-depth discussion and scientific basis of A. sessilis green and red's health-promoting properties in relation to their ethnobotanical use, nutritional components and bioactive compounds. MATERIALS AND METHODS: The literature search was conducted using relevant keywords on scientific search engines such as the Web of Science, Google Scholar, Medline and Scopus. RESULTS: A. sessilis shows potent antioxidant activity as a result of its diverse phytochemical constituents, such as polyphenols, terpenes, alkaloid and carotenoids in addition to its nutritional components: vitamin C, E and unsaturated fatty acids, which contribute to its various bioactive properties: anti-microbial and anthelmintic, anti-diabetic, lipid lowering, anti-inflammatory and analgesic activities, anti-cancer and other biological activities. Toxicity evaluation revealed the absence of adverse effect of A. sesslis extracts. CONCLUSION: A. sessilis has a great potential to be used as complementary medicine and ingredients for pharmaceuticals, nutraceuticals and functional foods, instead of being regarded as a pest. Prospects for enhancing the development and commercialisation of this edible medicinal weed as a high value health-promoting product are suggested.


Asunto(s)
Amaranthaceae , Etnofarmacología , Fitoquímicos/farmacología , Extractos Vegetales/farmacología , Malezas , Polifenoles
19.
BioTech (Basel) ; 11(1)2022 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-35822810

RESUMEN

The purpose of this paper is to elucidate the roles that microbes may be playing in the rootzone of the medicinal plant Daturainoxia. We hypothesized that the microbes associated with the Datura rootzone would be significantly different than the similar surrounding fields in composition and function. We also hypothesized that rhizospheric and endophytic microbes would be associated with similar metabolic functions to the plant rootzone they inhabited. The methods employed were microbial barcoding, tests of essential oils against antibiotic resistant bacteria and other soil bacterial isolates, 16S Next Generation Sequencing (NGS) metabarcoding, and Whole Genome Shotgun (WGS) taxonomic and functional analyses. A few of the main bacterial genera of interest that were differentially abundant in the Datura root microbiome were Flavobacterium (p = 0.007), Chitinophaga (p = 0.0007), Pedobacter (p = 6 × 10-5), Bradyhizobium (p = 1 × 10-8), and Paenibacillus (p = 1.46 × 10-6). There was significant evidence that the microbes associated with the Datura rootzone had elevated function related to bacterial chalcone synthase (p = 1.49 × 10-3) and permease genes (p < 0.003). There was some evidence that microbial functions in the Datura rootzone provided precursors to important plant bioactive molecules or were beneficial to plant growth. This is important because these compounds are phyto-protective antioxidants and are precursors to many aromatic bioactive compounds that are relevant to human health. In the context of known interactions, and current results, plants and microbes influence the flavonoid biosynthetic pathways of one other, in terms of the regulation of the phenylpropanoid pathway. This is the first study to focus on the microbial ecology of the Datura rootzone. There are possible biopharmaceutical and agricultural applications of the natural interplay that was discovered during this study of the Datura inoxia rhizosphere.

20.
J Environ Manage ; 319: 115631, 2022 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-35816964

RESUMEN

Climbing Hempweed (CH) is one of the top ten most obnoxious weeds on the planet, as well as one of the most destructive weeds. Its disastrous spread on the agricultural field has hampered the production of a wide range of crops. Various management techniques have been used to eradicate the weed, but none have been completely successful. As a result, management through the use of weed biomass will aid in the eradication of the weed as well as the production of a value-added product. To utilize invasive weed CH for the production of rotary drum compost (R1) and rotary drum followed by vermicompost (V1), two composting technologies were used. These technologies are being compared on several physicochemical parameters to determine their efficacy. V1 compost had the highest total Kjeldahl Nitrogen (TKN) (3.01%), potassium (3.45%), and total phosphorus (16.42 g/kg) levels, while R1 compost had 2.58% TKN, 2.8% potassium, and 14.25 g/kg total phosphorus. Subsequently, the increasing trends in mitotic index (%) of R1 and V1 samples imply that the cytotoxic effects of CH were decreased due to composting and vermicomposting processes. Genotoxicity assessment revealed that an aberration percentage of 1.64 was observed in 100% concentration of V1 (after 30 days) and 4.34% in R1(after 20 days). R1 and V1 were used to evaluate the performance of Abelmoschus esculentus where the highest fruit harvest was seen at 25% amended R1 compost and 35% amended V1 compost. The application of 25-35% R1 compost and 35-40% V1 compost was found to be the most beneficial for the development of Abelmoschus esculentus. There was no significant difference in heavy metal (Mn, Fe, Cu, Co, and Zn) content in the fruit of Abelmoschus esculentus post-application of R1 and V1 compost.


Asunto(s)
Abelmoschus , Compostaje , Biomasa , Nitrógeno , Fósforo , Malezas , Potasio , Suelo/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA